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Abstract: In this paper, the effects of shape and arrangement of inclusions on the effective Young's modulus of 
materials are considered by the application of the finite element method through examining a model, which has two 
groups of periodically arranged inclusions in a matrix. Here, two groups of inclusions A and B are considered, both 
having equally shaped equally arranged inclusions, which have the same elastic constants but different from the ones of 
the matrix. This model includes square and hexagonal arrays of inclusions as its special cases. First, the effect of shape 
of inclusions on the Young's modulus of composite materials is considered from the comparison between the results of 
rectangular and elliptical inclusions. Next, when the position of group A is fixed, the effect of location of group B is 
considered. Then the effective elastic Young's modulus is almost independent of the location of group B if the pro-
jected areas of groups A and B are not overlapped. In conclusion, the volume fraction of inclusion and projected area 
fraction of inclusions are found to be two major parameters controlling the effective Young's modulus of composites.
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1. INTRODUCTION

To predict effective properties of heterogeneous mate-
rials from a knowledge of constituents is a classical prob-
lem in science and engineering, attracting the attention of a 
lot of researchers [1-28]. Usually actual composites con-
tain randomly distributed irregular shaped inclusions. How-
ever, sometimes square and hexagonal arrays of equally 
shaped inclusions are treated instead of actual arrangement
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Fig. 1. Periodic arrangement of elliptical inclusions.

directly (see Fig. 1); then, some accurate solutions are avail-
able for those special cases [23-28], which may be helpful 
for discussing mechanical properties of composites. Recently, 
some investigations have been made for disordered array [29] 
using such as homogenization method [30-37]. These results 
are useful for evaluating actual composites; however, if the 
shape and arrangement of inclusions are changed a little, we 
have to reconsider the effective properties. In other words, 
there is little discussion about the relation between simple 
models and random arrangement on the basis of mechanical 
or physical consideration.

In this paper, therefore, the effects of shape and arrange-
ment of inclusions are considered by the application of the 
finite element method (FEM) through examining a model, 
which has two groups of periodically arranged inclusions in 
a matrix (see Fig. 2). Here, two groups of inclusions A and B 
are considered, both having equally shaped equally arranged 
inclusions, whose elastic constants are identical but differ-
ent from the ones of the matrix. This model includes square 
and hexagonal arrays of inclusions as its special cases. First, 
the effect of shape of inclusions on the effective Young's 
modulus will be considered from the comparison between 
the square arrays of rectangular and elliptical inclusions. 
Next, the position of group A is fixed; then, the effect of 
location of group B on the Young's modulus will be consid-
ered. Finally, controlling parameters of the effective Young's 
modulus of composites will be discussed on the basis on those 
mechanical and physical consideration.

2. METHOD OF ANALYSIS

The two-group-inclusion model shown in Fig. 2 can be 
analyzed in the following procedure using FEM. Figure 3 
(a) shows a unit cell of Fig. 2; then, the boundary conditions 
can be expressed as follows.
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Here, u and v are displacements in the x and y direc-
tions, respectively.

2.1. Boundary Conditions of Fig. 3 (a)
(1) Displacements on the lines x=0 and x=lx have the 
following relationc:

u=u1(y), v=v1(y) on the line x=0 ,then, 
u=u1(y)+u0, v=v1 (y) on the line x=lx,

(u0: unknown coast). (1)

(2) Displacements on the lines y=0 and y=lx have the 
following relations:

u=u2(x), v=v2(x) on the line y=0 ,then, 
u=u2(x), v=v2(x)+v0 on the line y=ly,

(v0: unknown const). (2)

(3) •çlx0ƒÐy|y=0,bdx=ƒÐ0•~lx,•çly0ƒÐx|x=0,dy=0. (3)

We have to set the constants u0, v0 so as to satisfy Eq. 
(3). However, since they are still unknown, the following 
method will be applied instead of solving the given prob-
lem directly. First, the following auxiliary problem (1) is 

solved under the boundary condition as shown in Eqs . (4)-

(6). Here, this C1 is an arbitrary constant (see Fig. 3 (b)).

2.2. Boundary Conditions of Fig. 3 (b)

(1) Both displacements on the lines x=0 and x=lx with 
0•…y•…ly can be expressed as 

u=u1(y), v=v1(y). (4)

(2) Displacements on the lines y=0 and y=lx have the 
following relations:

u=u2(x), v=v2(x) on the line x=0,then ,u=u2(x), v=v2(x)+C1 on the line x=lx,
(C1: arbitrary const). (5)

Then, the resultant force F in the x-direction on the bound-

aries x=0, lx with 0•…y•…ly and the resultant force F2 in 

y-direction on the boundaries y=0, ly, with 

are calculated as shown in Eq. (6).

(3) •çly0ƒÐx|x=0,lxdy=F1,•çlx0ƒÐy|y=0,lxdx=F2. (6)

Next, the second auxiliary problem (2) is solved under the 
following boundary conditions (see Fig. 3 (c)).

(a) (b) (c) (d)
Fig. 2. A moael naving two groups or perlodtcatiy arranged inclusions: (a) Model in this study (b) Square array 1 (c) 

Hexagonal array (d) Square array 2.

(a) (b) (c)
Fig. 3. boundary conditions and displacement modes: (a) Model in this study (b) Auxiliary problem (1) (c) Auxiliary 

problem (2).
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2.3. Boundary Conditions of Fig. 3 (c)

(1) Displacements on the line x=0 and x=lx have the 
following relation:

u=u1(y), v=v1(y) on the line ,; then,
u=u1(y)+C1,v=v1(y) on the line x=lx,

(C1: arbitrary const). (7)

(2) Both displacements on the lines y=0 and y=ly with 

0•…x•…lx can be expressed as:

u=u2(x), v=v2(x). (8)

Under the conditions (7) and (8), the resultant force F3 

in the x-direction on the boundaries x=0, lx with 

0•…y•…1y and the resultant force F4 in the y-direction on 

the boundaries y=0, ly with 0•…x•…lx are calculated as 

shown in Eq. (9).

(3) •çly0ƒÐx|x=0,lxdy=F3, •çlx0ƒÐy|y=0,lxdx=F4. (9)

The solution for Fig. 3 (a) can be expressed by superposing 

the solution for Fig. 3 (b) and the solution for Fig. 3 (c) as 

shown in Eq. (10). Here the solutions of Figs. 3 (a)', (b), (c) 

denote (ƒÐa, ua), (ƒÐb, ub), (ƒÐc, uc), respectively.

Here, A and B must satisfy

A•~F+B•~F3=0

A•~F2+B•~F4=ƒÐ0lx. (11)

The constant displacement u0, v0 in Fig. 3 (a) can be ex-

pressed as the followings:

u0=BC1.v0=AC1 . (12)

The effective elastic constants of the composite shown in 
Fig. 3 (a) are given by Eq. (13).

In this paper the effective Young's modulus E (=Ey) is dis-
cussed.

3. EFFECT OF SHAPE OF INCLUSION

Plane stress condition with Poisson's ratio vM=v1=0.3 

is assumed in the following calculations. Here, ( EM, vM) 

and ( E1, v1) are elastic constants of the matrix and inclu-

sion, respectively. First, square array of circular inclusions 

is analyzed in order to confirm the accuracy of FEM analy-

sis. Then, it is found that Isida-Sato's results [23] coincide 

with the present results with 1% in most cases.

Next, square arrays of rectangular and elliptical inclu-

sions are compared (see Fig. 4). In Figs. 5 and 6, the results 

of rectangular inclusions are compared with Murakami's 

results of elliptical inclusions [24]. When the unit cell has 

the dimensions 2lx•~2ly, the volume fractions of inclusion 

can be expressed as V1=ab/(lxly) for rectangular inclu-

sion, where a, b are dimensions of rectangle. For elliptical 

inclusion V1=ƒÎa'b'/(4lxly), where a', b' are radii of el-

lipse.

In Fig. 5, as V1cc0 with E1/EM=10-5 all results coin-

cide with the results of periodically arranged cracks obtained 

by Isida-Igawa [28]. Similarly, as V1•¨0 with 

EI/EM=105 all results should coincide with the results 

of line inclusions although they are not available. The ef-

fect of the line inclusion on the Young's modulus seems small 

because E/EM is almost unity as V•¨0.

As shown in Figs 5 and 6, the effective Young's modulus 

is not equal even though the volume fraction of inclusion is 

constant. For example, when V1=0.15 the Young's modulus 

varies from 1.25 to 2.05 depending on a/lx, which is the 

projected area of inclusion. It may be concluded that the 
effective Young's modulus is identical under the following 

conditions:

(1) the projected area fractions of inclusions are equal, that 

is, a/lx=a'/lx

(2) the volume fractions of inclusions are equal, that is, 
ab/(lxly)=ƒÎa'b'/(4lxly)

Figure 4 illustrates the equivalent condition of 

inclusions.If the condition is satisfied, it may be concluded 

that the effective Young's modulus is almost equal even 

though the shape of inclusions differs from rectangle or 

ellipse. Actual irregularly shaped inclusions, therefore, may 

be evaluated from equivalent rectangular inclusions with

(a) (b)
Fig. 4. Elastic modulus is almost equal when 

(1) a/lx=a'/lx and (2) ab/(lxly)=ƒÎs'b'/(4lxly).
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the application of FEM. This replacement may be effective 

and efficient if actual inclusions are well-approximated by 

elliptical or rectangular inclusions.

4. EFFECT OF ARRANGEMENT OF INCLUSION

In this section, the position of group A is fixed in Fig. 2. 

Then, the effect of location of group B on the effective 

Young's modulus will be considered. When the unit cell 

has the dimensions lx•~ly, the volume fractions of inclu-

sion can be expressed as V1=8ab/(lxly) for rectangular 

inclusion, whose dimensions are 2a•~2b. Figure 7 shows 

four types of models (1)-(4) of two groups of periodically 

arranged inclusions. Here, we set E1/EM=105 with 

Poisson's ratio vM=v1=0.3. The central coordinate of 

group B varies in the range 0•…x•…lx/2, 0•…y•…lx/2. 
Here, E is the effective Young's modulus in the y-direction 

(see eqn (13)).
Tables 1-4 indicate relation between E/EM and central 

E/EM vs. central coordinate of group B in model (1). 

For example, for model (1), E1/EM=1.157 for hexago-

nal array (A), and E1/EM=1.170 for square array (B); 

then. there is no large difference between them. Figures 8-

11 indicate E/EM vs. the central coordinateof group B in 

models (1)-(4). As shown in these figures, E/EM takes a 

maximum value when the central coordinate is on (C), and 

a minimum value when the central coordinate is on (D). 

Variation of (E/EM) normarized by the value of (A) is

a 

Fig. 5. Relation between E/EM and V1 (E1/EM=105).

Fig. 6. Relation between E/EM and V1 (E1/EM=10-5).

(3), and 0.90•`1.11 for model (4). However, if we compare 

among the values of (A), (B), (D), the variation becomes 

small, within about a few percent, that is, 0.99•`1.01 for 

model (1), 0.99•`1.03 for model (2), 0.94•`1.02 for model 

(3), and 0.90•`1.00 for model (4). It may be concluded that 

the effective Young's modulus is almost independent of the 

location of group B if the projected areas of groups A and B 

are not overlapped. Figure 12 illustrates this condition.

Generally, it may be concluded that the volume fraction 

of inclusion and projected area fraction of inclusions are 

two major parameters controlling the effective Young's 

modulus of composites. In order to evaluate disordered in-

clusions it may be useful and efficient to analyze an equiva-

lent ordered-rectangular inclusion-model with the applica-

tion of FEM.

5. CONCLUSIONS

In this paper, the effect of shape and arrangement of in-

clusions on the effective Young's modulus of heterogeneous 

materials is considered by the application of FEM through 

examining a model, which has two groups of periodically 

arranged inclusions in a matrix.

(1) The effect of shape of inclusions is considered from the 
results of rectangular and elliptical inclusions. The effec-

tive Young's modulus is found to be mainly determined by 

two major parameters, that is, (i) the area fraction of inclu-

sions projected in tensile direction, and (ii) the volume frac-

tion of inclusion, almost independent of shape of inclusion.

(2) The effect of location of group B is considered when the 

position of group A is fixed. It may be concluded that the

model (1) model (2)

model (3)

model (4) Fig. 7. Models of two groups of periodically arranged in-
clusions.
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Young's modulus is almost independent of the location of 
group B if the projected areas of groups A and B are not 
overlapped.
(3) The volume fraction of inclusion and projected area 
fraction of inclusions are found to be two major param-
eters controlling the effective Young's modulus of com-
posites. Disordered irregularly-shaped inclusions may be 
evaluated from equivalent ordered rectangular inclusions 
with the application of FEM. This replacement may be ef-
fective and efficient if actual inclusions are well-approxi 
mated by elliptical or rectangular inclusions.

Table 1. E/EM vs. central coordinate of inclusion B in 
model (1) (b/a=1, 1x/ly=1, V1=8ab/(lx/ly)=0.08 
E1/EM=105).

Table 2. E/EM vs. central coordinate of inclusion B in 
model (2) (b/a=1, lx/ly=1, V1=8ab/(lx/ly)=0.18, 
E1/EM=105).

Table 3. E/EM vs. central coordinate of inclusion B in 
model (3) (b/a=4, lx/ly=1, V=8ab/(lx/ly)=0.08, 
E1/EM=105).

Table 4. E/EM vs. central coordinate of inclusion B in 
model (4) (b/a=4, lx/ly=4, V1=8ab/(lx/ly)=0.08, 
E1/EM,=105).

Fig. 8. E/EM vs. central coordinate of group B in model 

(1) (b/a=1, lx/ly=1, V1=8ab/(lx/ly)=0.08, 
E1/EM=105).

Fig. 9. E/EM vs. central coordinate of group B in model 
(2) (b/a=1, lx/ly=1, V1=8ab/(lx/ly)=0.18, 
E1/EM=105).

Fig. 10. E/EM vs, central coordinate of group B in model 
(3) (b/a=4, lx/ly=1, V1=8ab/(lx/ly)=0.08, 
E1/EM=105).
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Fig. 11. E/EM vs. central coordinate of group B in model 
(4) (b/a=4, lx/ly=4, U1=8ab/(lx/ly)=0.08, 
El/EM=105).

(a) (b) (c)

Fig. 12. Effective Young's modulus is almost equal in (a) 
and (b), but not equal in (c).

REFERENCES
1. R. Layleigh, Philos. Mag., 34 (1892) 481.
2. A. Einstein, Ann. Phys., 19 (1906) 269.
3. D.J. Bergman, Phys. Rep., C-43 (1978) 377.
4. G.W. Milton, J. Appl. Phys., 52 (1981) 5294.
5. G.W. Milton and N. Phan-Thien, Proc. R. Soc. London, A-

380 (1982) 305.
6. G.W. Milton and R.V. Kohn, J. Mech. Phys. Solids., 36 (19

88) 597.
7. G.W. Milton, J. Mech. Phys. Solids., 30 (1982) 177.
8. S. Torquato, Int. J. Solids Struct., 37 (2000) 411.
9. S. Torquato, J. Chem. Phys., 84 (1986) 6345.
10. J. Rubinstein and S. Torquato, J. Fluid. Mech., 206 (1989) 25.
11. S. Torquato and G. Stell, J. Chem. Phys., 82 (1985) 980.
12. S. Torquato and F. Lado, J. Phys., A-18 (1985) 141.
13. S. Torquato, J. Status. Phys., 45 (1986) 843.
14. S. Torquato, J. Chem. Phys., 85 (1986) 4622.
15. S. Torquato, B. Lu and J. Rubinstein, Phys. Rev., A-41 (1990) 

2059.
16. B. Lu and S. Torquato, Phys. Rev., A-43 (1991) 2078.
17. D.F. Adams and D.R. Doner, J. Compos. Mater. 1 (1967) 152.
18. K. Yamawaki and M. Uemura, Bulletin of the Institute of 

Space and Aeronautical Science University of Tokyo, 7 (1971) 
315 (in Japanese).

19. J.E. Flaherty and J.B. Keller, Common Pure and Appl. Math., 
John Wiley & Sons., 26 (1973) 565.

20. M. Uemura and N. Yamada, Journal of the Society of Materi-
als Science., 24 (1975) 156 (in Japanese).

21. K. Yamawaki and M. Uemura, Bulletin of the Institute of Space 
and Aeronautical Science University of Tokyo, 7 (1971) 315 
(in Japanese).

22. C.H. Chen and S. Cheng, J. Compos. Mater., 1 (1967) 30.
23. M. Isida and R. Sato, Trans. Japan Soc. Mech. Engrs, 50-457 

(1984) 1619 (in Japanese).
24. Y. Uchiyama, M. Yatsuda and Y. Murakami, J. Japan Soc. 

Composite Materials, 11 (1985) 275 (in Japanese).
25. M. Isida and H. Igawa, Int. J. Solids Struct., 27-7 (1991) 849.
26. M. Isida and H. Igawa, Int. J. Solids Struct., 27-12 (1991) 1515.
27. M. Isida and H. Igawa, Int. J. Fract. 53 (1992) 249.
28. M. Isida and H. Igawa, Trans. Japan Soc. Mech. Engrs., 55-

510 (1989) 238 (in Japanese).
29. K. Terada and N. Kikuchu, Trans. Japan Soc. Mech. Engrs., 

64-617A (1995) 162 (in Japanese).
30. A. Benssousan, J.L. Lions and G. Papanicolaou, Asymptotic 

Analysis for Periodic Structures, North Holland, Amsterdam 
(1978).

31. E. Sanchez-Palencia, Lecture Note in Physics, Berlin, Splinger 
(1980).

32. I. Babuska, Computing Method in Applied Sciences and En-
gineering. Springer, Berlin (1980) 134.

33. K. Terada, K. Yuge and N. Kikuchu, Trans. Japan Soc. Mech. 
Engrs., 61-590A (1995) 2199 (in Japanese).

34. T. Kyoya and M. Hori, Applications to Mechanical Problems 
of Rocks and Rock Mass-Micromechanics and Homogeniza
tion Method Journal of the Society of Materials Science, Ja-
pan. 45 (1996) 465 (in Japanese).

35. H. Okada, Y. Fukui, N. Kumazawa and M. Maruyama, Trans. 
Japan Soc. Mech. Engrs 64-618A (1998) 450 (in Japanese).

36. P.S. Theocaris and G.E. Stavroulakis, Archive of Appl. Mech., 
68 (1998) 281.

37. P.S. Theocaris, G.E. Stavroulakis and P.D. Panagiotopoulos, 
Archive of Appl. Mech. 67 (1997) 274.

19


